Erratum to “Degree-based topological indices on anticancer drugs with QSPR analysis” [Heliyon 6 (6) (June 2020) e04235]
نویسندگان
چکیده
منابع مشابه
QSPR Analysis with Curvilinear Regression Modeling and Topological Indices
Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملOn ev-degree and ve-degree topological indices
Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...
متن کاملQSPR study on benzene derivatives to some physico-chemical properties by using topological indices
QSPR study on benzene derivatives have been made using recently introduced topological methodology. In this study the relationship between the Randic' (x'), Balaban (J), Szeged (Sz),Harary (H), Wiener (W), HyperWiener and Wiener Polarity (WP) to the thermal energy (Eth), heat capacity (CV) and entropy (S) of benzene derivatives is represented. Physicochemical properties are taken from the quant...
متن کاملm-polynomial and degree-based topological indices
let $g$ be a graph and let $m_{ij}(g)$, $i,jge 1$, be the number of edges $uv$ of $g$ such that ${d_v(g), d_u(g)} = {i,j}$. the {em $m$-polynomial} of $g$ is introduced with $displaystyle{m(g;x,y) = sum_{ile j} m_{ij}(g)x^iy^j}$. it is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Heliyon
سال: 2020
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2020.e04754